



# Improved GaN Growth on Nanoporous Substrates

D.D. Koleske, J.A. Freitas, Jr., G.C.B. Braga\*, A.E. Wickenden,
 R.L. Henry, S.C. Binari, M.E. Twigg, J.C. Culbertson, M. Fatemi,
 P.B. Klein, M. Mynbaeva\*\*, and V.A. Dmitriev\*\*\*

Naval Research Laboratory, Washington, D.C. 20375, USA, \*Inst. Of Physics, Dept. of Brasilia, Brazil.

\*\*Ioffe Physical-Technical Institute, St.Petersburg, Russia.

\*\*\*TDI Inc., Gaithersburg, MD, USA.

Support from the Office of Naval Research

### Navy Needs for Wide-Bandgap Semiconductors



- RF applications: radar transmitters
- ♦ High power switches: all-electric ship
- High temperature applications: engine sensors
- High radiation tolerance: space applications, nuclear reactors
- Optoelectronics: communications

#### Two Nitride MOVPE Reactors at NRL



#### Advantages close-spaced showerhead

- Avoid pre-mixing of alkyls and NH<sub>3</sub>
- Fixed boundary layer
- More uniform film growth
- Large grain size
- Better high temperature growth

#### Advantages quartz rf-heated

- Higher growth rates
- Increased flexibility
- Better nucleation layers
- Higher temperatures possible



## Group III-Nitride Research at NRL

#### ◆ MOCVD growth

- Two nitride reactors, experimental and theoretical studies.

#### Characterization

- Electrical analysis
  - » Hall transport, Current-Voltage, bulk resistivity measurement.
- Microstructural analysis
  - » Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD).
- Spectroscopic analysis
  - » Photoluminescence (PL), Magnetic Resonance (EPR, ODMR), Cathodoluminescence (CL).

#### Device Fabrication

Microwave transistors and diodes fabrication and testing.

## Methods for Reducing Dislocations in GaN

- Homoepitaxy on GaN single crystals.
  - Bulk crystals not commercially available.
- Lateral Epitaxial Overgrowth (LEO).
  - Lateral growth over a oxide or nitride mask region.
- "Pendeoepitaxy".
  - Lateral and vertical growth from an etched GaN post.
- ◆ Interlayers regrowth of nucleation layer
  - Removes screw-like dislocations from GaN.
- GaN growth on "Nanoporous" Material.
  - GaN films are electrochemically etched and GaN is regrown in the pores.
  - GaN films are grown on as-grown "porous" AIN layers.

#### AFM of MOCVD GaN on Sapphire



- Observe lattice step edges.
  - Most step edges are ~2Å.
  - Ga planes and N planes are separated by ~2Å.
- Lattice step edges terminate in pits (**P** screw or mixed dislocations).
  - Each pit has a full ~5Å
     Ga to Ga or N to N
     lattice step as you go
     around it.
  - The intermediate plane is not always seen.
- Dislocation density  $\sim 8 \times 10^8 / \text{cm}^2$

### GaN Lateral Epitaxial Overgrowth (LEO)





1). Grow GaN on sapphire

2). Pattern GaN with SiO<sub>2</sub>





3). Grow GaN on SiO<sub>2</sub>

4). Grow GaN until coalescence

Advantage: Reduces dislocations in LEO region.

O. Nam et al. Appl. Phys. Lett. 71, 2638 (1997)



Disadvantages: Requires lithographic patterning, material not uniform.

#### AFM Observation of Defect Reduction in LEO GaN

Bulk GaN 108-1010 dislocations



LEO GaN  $< 10^6 - 10^7$  dislocations



2 μm x 2μm

step terminations

Several screw dislocations in Bulk

no step terminations no dislocations in LEO

#### GaN Pendeoepitaxy for Dislocation Reduction







"pendeo" growth process

T. Gehrke et al., See http://muriserver.mte.ncsu.edu/muri-8.htm Report on ONR MURI on Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors,



Advantage: Reduces most dislocations in GaN. Material more uniform.

Disadvantage: Requires lithographic patterning and RIE etching step. Stress in GaN film.

### **AIN Interlayers to Improve Bulk GaN**

D.D. Koleske, et al. Appl. Phys. Lett, Nov 15th 1999, also MRS Fall 1999, Symposium O, talk 7.3







The interlayer is a regrowth of the AlN nucleation layer on GaN. This process can be repeated a number of times to reduce the dislocation density and provide thick GaN films on sapphire without cracks.

Using the interlayer screw-type dislocations are filtered out of the growth process

Without interlayers,  $\mu = 440 \text{ cm}^2/\text{Vs}$ , with  $\mu = 725 \text{ cm}^2/\text{Vs}$ 

Carriers behave as bulk GaN carriers and not 2DEG carriers

Work in progress to incorporate interlayers into HEMT devices to further improve device performance



## GaN Growth on Nanoporous GaN

GaN growth mechanism is likely similar to "pendeoepitaxy" where lateral growth proceeds from etched GaN pillars

lateral growth Films are strained and have a Dislocation cores large dislocation density are etched in HF Initial GaN on SiC Porous GaN Regrowth of GaN

## Making GaN Porous

M.G. Mynbaeva and D.V. Tsvetkov, Inst. Phys. Conf. Ser 155, p 365 (1996).



## Room Temperature Photoluminescence of GaN on porous GaN



## Room Temperature Photoluminescence

- ◆ 1) 412B grown at 76 torr
  - Yellow (2.2 eV) and blue (3.0 eV) bands dominate the lower energy spectral region.
- ◆ 2) 602C grown at 130 torr (best growth pressure)
  - In general, PL emission at high temperature in <u>high</u> <u>quality material</u> is dominated by band-to-band and free exciton recombination processes, which is observed in this sample.
- ◆ 3) 815A grown at 200 torr
  - Dominated by yellow band and a broad emission comprising the free-to-bound and band edge transitions.

## Low Temperature Photoluminescence

of GaN on porous GaN



## Low Temperature Photoluminescence

- ◆ 1) 412B grown at 76 torr
  - Observe yellow (2.2 eV) and blue (3.0 eV) bands.
  - Yellow band may be structural and/or impurity related.
  - Blue band is a compensating center which maybe related to carbon. The blue band is usually observed in highlyresistive (semi-insulating) GaN
- ◆ 2) 602C grown at 130 torr (best growth pressure)
  - Lower yellow band by a factor of 100.
  - Lower blue band by a factor of 10.
- ◆ 3) 815A grown at 200 torr
  - Higher compensation of background donors by an (as yet) unidentified shallow acceptor.

## AFM of porous GaN and GaN regrowth

#### 1x1 µm scans

Initial porous substate



height scale 0-10 nm rougher x = potential nucleation site?

2 µm GaN on porous substrate



height scale 0-3 nm smoother yellow lines = step edges = 5 Å

#### AFM of "Porous" AlN on SiC



## TEM of GaN on "porous" AIN on SiC



Observe the granularity in the GaN. Grains appear better aligned.

AIN film has edge dislocations, but few screw dislocations

#### AFM of GaN Grown on "Porous" AlN on SiC



Better GaN grain alignment and fewer screw dislocations Electron mobilities are > 600 cm<sup>2</sup>/Vs in Si doped films and > 1000 cm<sup>2</sup>/Vs in AlGaN/GaN HEMT layers

# Electrical Properties of GaN on "porous" AIN on SiC

| Run     | Si (sccm      | ) Temp   | n x 10 <sup>17</sup>  | mobility |
|---------|---------------|----------|-----------------------|----------|
|         | Bulk Si Doped |          |                       |          |
| 2K0714A | 0.30          | 300K     | 6.64                  | 416      |
| 2K0808  | 0.10          | 300K     | 2.38                  | 574      |
| 2K0808  | 0.10          | 77K      | 0.64                  | 511      |
| 2K0808  | 0.10          | 300K     | 3.36                  | 620      |
| 2K0808  | 0.10          | 77K      | 1.00                  | 671      |
| 2K0817  | 0.05          | 300K     | 2.01                  | 626      |
| 2K0817  | 0.05          | 77K      | 0.52                  | 695      |
|         | Д             | IGaN/GaN | HEMT                  |          |
| 2K0810* | -             | 300K     | 1.15x10 <sup>13</sup> | 1030     |
| 2K0810* | -             | 77K      | 1.21x10 <sup>13</sup> | 1900     |

## FY99 R&D Accomplishments: Control of GaN Microstructure and Defects for Improved Device Performance



FET92 I/V data (TS81214A HEMT)

1.0

1.0

1.0

0.8

0.6

0.4

0.0

0.2

0.0

0 2 4 6 8 10

Drain Voltage (V)

- MOCVD material growth optimized for large grain size (> 5 μm) highly resistive GaN, using interactive XTEM & Hall analyses
- AlGaN/GaN interface roughness of 5-10Å measured in XTEM
- Al<sub>0.3</sub>Ga<sub>0.7</sub>N:Si/GaN HEMT structure grown reproducibly, yielding
  - 300K:  $n_{sheet} = 1.2x10^{13} \text{ cm}^{-2}$ ,  $\mu = 1500 \text{ cm}^2/\text{Vs}$
  - 77K:  $n_{sheet} = 1.3x10^{13} \text{ cm}^{-2}$ ,  $\mu = 4000 \text{ cm}^2/\text{Vs}$
- GaN buffer resistivity =  $10^5 \Omega$ -cm
- Drain lag eliminated from fabricated devices
- Current collapse reduced in operating devices
- Pulsed power output of 6 W/mm observed in devices fabricated on this material